

ASX RELEASE

28 JULY 2021

Celsius Receives Further High-Grade Copper-Gold Results From MCB Project

HIGHLIGHTS

- Continuity of high-grade core confirmed with assay results from MCB-034, including 74m @ 0.97% Cu and 0.14g/t gold from 353m down hole.
- Total intersection of 607m @ 0.44% copper and 0.04g/t gold from 26m down hole.
- The two drill holes completed to date (MCB-033 and MCB-034) have confirmed the continuity of the large-scale copper mineralisation in addition to providing greater definition to the higher-grade central core at MCB.
- The drilling results continue to improve confidence in the existing MCB Mineral Resource estimate.
- Drilling of MCB-036 has now commenced, which in addition to planned drill hole MCB-035, are aimed at defining deeper extensions to the large-scale copper mineralisation at MCB.

Celsius Resources Limited ("Celsius" or "the Company") is pleased to announce its Philippine subsidiary Makilala Mining Company, Inc. ("MMCI") has received high-grade copper-gold assay results from the Company's second drill hole, which was recently completed at the MCB Copper-Gold Project ("MCB"), located on the island of Luzon in the Philippines.

The results from hole MCB-034 confirm the position of a central core of high-grade mineralisation, similar to MCB-033, and has increased confidence for this portion of the Mineral Resource.

"Celsius is delighted with the excellent results received from the second hole MCB-034, which like those of the first hole MCB-033, provide a great deal of confidence in the quality and scale of the copper-gold mineralisation at our flagship MCB project, and in particular the scale and quality of the high grade core that is the focus of the current Scoping Study." said Celsius Resources Executive Director Blair Sergeant.

MCB COPPER-GOLD PROJECT

The MCB Copper-Gold Project (MCB) is located in the Cordillera Administrative Region in the Philippines, approximately 320 kilometers north of Manila (Figure 1). It is the flagship project within the Makilala portfolio which also contains other key prospects in the pipeline for permit renewal/extension.

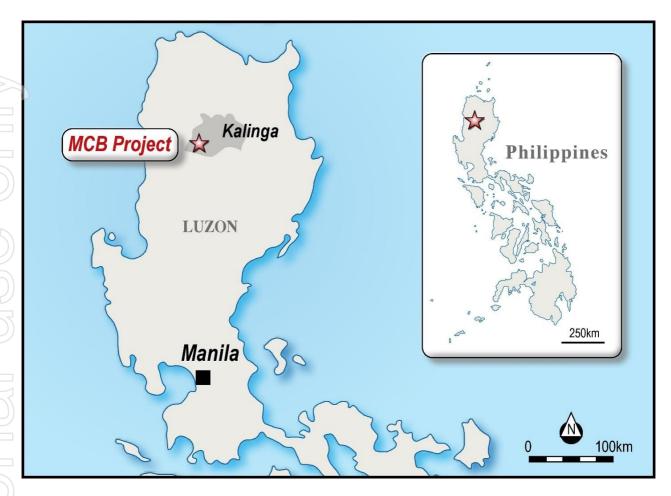


Figure 1: Location of the MCB Project in the province of Kalinga, Northern Luzon, Philippines.

A maiden JORC compliant Mineral Resource was declared for the MCB Project in January 2021, comprising 313.8 million tonnes @ 0.48% copper and 0.15 g/t gold, for 1.5 million tonnes of contained copper and 1.47 million ounces of gold.

Within the above, is a high-grade core of 93.7 million tonnes @ 0.80% copper and 0.28 g/t gold, currently the focus of the Scoping Study. The high-grade core comprises 79.8 million tonnes @ 0.83% copper and 0.30 g/t gold in the Indicated category and 13.9 million tonnes @ 0.59% copper and 0.11 g/t gold in the Inferred category (refer ASX announcement of 12 January 2021).

RESULTS FROM DRILLING AT MCB

Makilala Mining commenced drilling activities at MCB in February 2021. The planned drilling program and current status of this drilling, is designed to achieve a number of key milestones, including:

- increase confidence in the high-grade portion of the Mineral Resource now completed
- test depth extensions to the high-grade section of the copper gold mineralisation in progress
- test further strike extensions to the MCB deposit across a defined fault which appears to offset the copper-gold mineralisation on its western boundary.

The geological setting for the MCB copper-gold mineralisation is typical of a porphyry copper + gold + moly deposit. The mineralisation and associated alteration exist across the contact between a genetically related intrusive body (tonalite) and the surrounding host rock material. In most cases the surrounding host rock is an older mafic volcanic rock (see Figures 3 and 4).

Results from the first drill hole, MCB-033, identified broad intervals of altered intrusive tonalite rocks and altered basaltic host rocks in association with the copper-gold mineralisation. Drill hole MCB-033 passed very close to the contact position between the basalt and the tonalite (based on the surrounding drill hole information) but did not intersect the tonalite rock (Figure 3).

Results from the second drill hole, MCB-034 (subject of this announcement) identified copper mineralisation as shallow as 26m down hole, extending all the way down to 633m. These defined extents to the copper mineralisation are broadly in line with the surrounding historical drilling information and typically defined by a lower cut-off grade of approximately 0.2% Cu.

There are several higher-grade intervals, including a well-defined high-grade core, which is above a cut grade of approximately 0.5% copper. This includes an intersection of **74.0m at 0.97% copper & 0.14g/t gold**, with an estimated true width of ~ 58m. The significant intersections based on the assay results received from MCB-034 are detailed in Table 1.

Tabl	e 1: Significant	intersections j	from drill hol	e MCB-033.
------	-------------------------	-----------------	----------------	------------

Hole ID	East	North	RL	Dip	Azi	Total Depth	Depth From	Depth To	Length (m)	Cu (%)	Au (g/t)
MCB-034	293,926	1,918,651	915	62	350	684.4	26	633	607	0.44	0.05
						incl.	34	66	32.	0.75	0.03
						incl.	200	280	80	0.57	0.09
						incl.	353	427	74	0.97	0.14
						inc	385	426	41.5	1.34	0.21

STATUS OF DRILLHOLE #3 - MCB-036

The third drill hole of the current program at MCB (MCB-036) is underway and was at a depth of 60.0m as of the date of this release. Drill hole MCB-036 is one of two drill holes (including planned hole MCB-035) planned to test for deeper extensions to the high-grade copper-gold mineralisation at MCB.

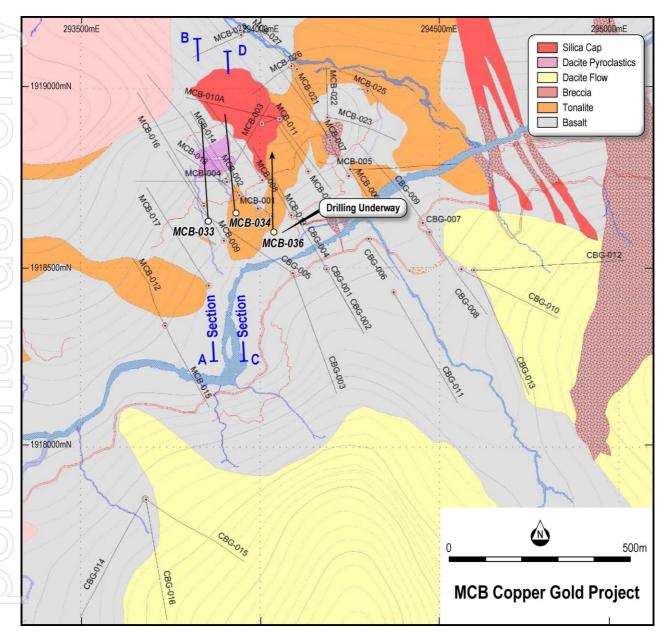
Images 1 & 2 - Drill Rig operating at MCB-036

SCOPING STUDY UPDATE

The preparation of the Scoping Study continues to progress well and remains on track with a target completion towards the end of Q3 2021. Major components of the Study are currently ongoing with the status of some those work streams as follows:

- Mine Plan and Design Trade-Off Study 100% complete.
- Infrastructure Requirement/Layout 95% complete.
- Paste Backfill Study 20% complete awaiting results from Comminution test work
- Metallurgical Test Work 20% complete Anticipated completion 3rd Week of August.
- Process Plant Design 20% complete awaiting results from Comminution test work
- Dam Conceptual Design 10% complete awaiting technical information from Paste Backfill and Comminution Studies.

SOCIAL AND ENVIRONMENTAL BASELINE STUDIES


In compliance with the MCB exploration permit conditions, field data gathering and laboratory analysis for the Social and Environmental Baseline Studies commenced this month in partnership with the Kalinga State University. The results of these studies will feed into the development of the project's future environmental and social impact management plans along with other further studies which are essential to the project design and approvals. The studies cover socio-economic, pedology, terrestrial and aquatic resources, as well as climatology with various University research teams involved and will be progressively completed by November 2021. Water monitoring studies have already been conducted during the past exploration activities and will supplement the overall environmental study program for MCB.

Images 3-7. Social and Environmental study teams during their field data gathering at MCB and laboratory analysis at KSU.

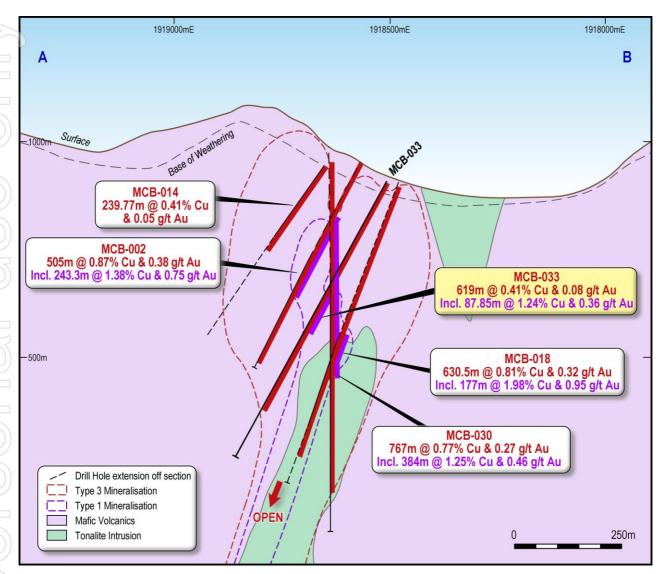


Figure 2: Plan view of the surface geology and MCB-034 relative to the historical drill holes at MCB. Co-ordinates are referenced in WGS 84/UTM Zone 51N.

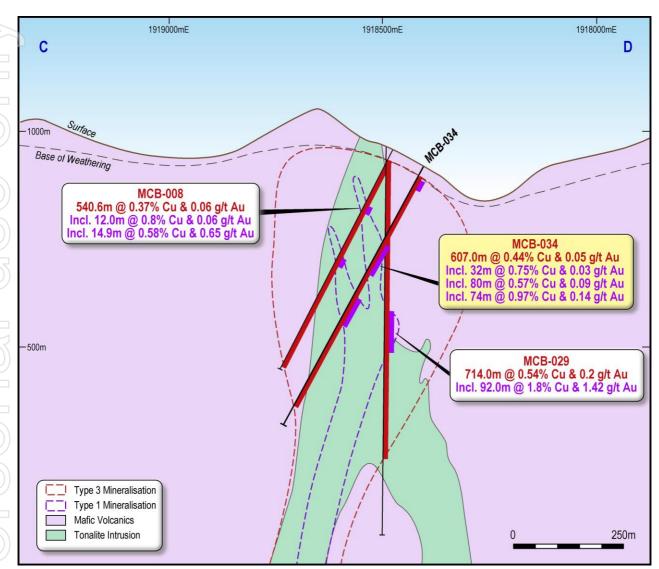


Figure 3: Cross Section highlighting results from MCB-033, the surrounding drill hole information and interpreted geology. Drill Holes are dashed where they extend away from the defined cross section.

Figure 4: Cross Section highlighting results from MCB-034, the surrounding drill hole information and interpreted geology.

This announcement has been authorised by the Board of Directors of Celsius Resources Limited.

Celsius Resources Contact Information

Level 2, 22 Mount Street Perth WA 6000

PO Box 7054

Cloisters Square Perth WA 6850

P: +61 8 6188 8181 F: +61 8 6188 8182

E: <u>info@celsiusresources.com.au</u> W: www.celsiusresources.com.au

Media contact

David Tasker / Colin Jacoby Chapter One Advisors

M: +61 433 112 936 / +61 439 980 359

E: dtasker@chapteroneadvisors.com.au / cjacoby@chapteroneadvisors.com.au / cjacoby@chapteroneadvisors.com / cjacoby.com /

Competent Persons Statement

Information in this report relating to Exploration Results is based on information compiled, reviewed and assessed by Mr. Steven Olsen, who is a Member of the Australasian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr. Olsen is a consultant to Celsius Resources and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr. Olsen consents to the inclusion of the data in the form and context in which it appears.

The Company confirms that it is not aware of any new information or data that materially affects the Mineral Resource for the MCB Project. The Company also confirms that all material assumptions and parameters underpinning the Mineral Resource estimate continue to apply and have not materially changed. Please refer to the ASX Announcement of 12 January 2021.

Appendix 1: The following tables are provided to ensure compliance with the JORC Code (2012) requirements for the reporting of Exploration Results for the MCB Project

SECTION 1:

	JORC Code explanation	Commentary	
Sampling techniques	 Nature and quality of sampling (e.g., cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g., 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g., submarine nodules) may warrant disclosure of detailed information. 	 Samples were collected from diamond core drilled from the surface. All drill core was generally sampled on 2-meter intervals. In cases where geological and mineralogical characteristics change, sample length was not less than 1 meter. Core samples cut into half using diamond core saw following the cutting lines marked by the Geologist. Split cores returned to its respective core tray. Samples were shipped by company vehicle to Intertek Testing Services which is an external laboratory located in Manila, Philippines. Crushed samples were fire assayed for gold (Au) using a 30-gram charge, with a detection limit of 0.005 ppm. Gold values greater than 50 ppm were determined by gravimetric fire assay. Copper (Cu) values were assayed using Four acid digestion. Elements determined by AAS finish with final reporting for a total of 36 elements. 	
Drilling techniques	 Drill type (e.g., core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g., core diameter, triple or standard tube, depth of diamond tails, face-sampling bit, or other type, whether core is oriented and if so, by what method, etc). 	 Diamond drilling was used to capture the rock samples, with the following drill core size summarized as follows: PQ sized drill core with a core diameter of 83.1 mm was drilled for a total length of 112.6m, HQ sized drill core with a core diameter of 61.1mm was drilled for a total length of 338.6m, and 	

Criteria	JORC Code explanation	Commentary
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Core recovery has been recorded for every interval as part of the routine geomechanical logging. Recovered core lengths on average were measured to be over 97% for the total length of the drill hole, indicating a high recovery and minimal lost core. All drilling activities were supervised by company Geologists. Trained Core house Technician were responsible for the core recovery determination. Core was arranged to fit the breakages, before the actual core length from the start to the end of the drill run was measured. Percent recovery was calculated from dividing the measured core length over the total drill run multiplied by 100. There were only a few minor positions where an interpreted structure resulted in a core recovery of less than 80%.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geologists were tasked to oversee the daily quick log report down to sampling. Daily quick log form was completed to identify the geological details such as lithology, alteration and mineralisation with corresponding percentage estimate of Cu minerals and Cu grade, using an established geological code: Detailed logging proceeds describing geological characteristics present in the core, i.e., lithology, alteration, mineralogy, structures, etc. Core photography was undertaken after completing the geomechanical logging.
Sub- sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Samples were routinely taken over a 2m interval, and cut in half, with half of the drill core sent for analysis and half of the drill core retained for future reference. Samples were cut on site using a hand core saw. Samples were then selected and bagged on site prito delivery to the laboratory (Intertek) in Manila for sample preparation. The sample size is considered appropriate for type material being samples.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g., standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e., lack of bias) and precision have been established. 	 Samples were fire assayed for gold (Au) using a 30-gram charge, with a detection limit of 0.005 ppm. Gold values greater than 50 ppm were determined by gravimetric fire assay. Copper (Cu) values were assayed using four acid digestion. Elements determined by AAS finish The procedures for the submission of samples to the laboratory also include the regular insertion of QA/QC samples in every transmittal form or batch, which was typically delivered to the laboratory in batches of 50 numbered samples. For each batch of 50 samples a total of 43 came from core samples and an additional 7 samples were included for QA/QC checks, which were as follows: Four referenced standards One referenced Blank One coarse (unrecognisable) blank One field duplicate taken from the quartered core After sample preparation, all samples were sent for final analysis to Intertek at their laboratory in Manila. Intertek is an internationally recognised and ISO/IEC 17025:2005 & ISO/IEC 17020:2004 certified independent laboratory.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	 Analytical procedures provided by an internationally certified laboratory is considered in line with industry standard for the type of deposit and mineralisation identified at the Property. Apart from the verification of the procedures and results as described above, no further verification of the sampling and assaying have been undertaken. None of the drill holes in this report are twinned.

• Discuss any adjustment to assay data.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 All data reference points and maps for the Makilala database, including drill hole collar co-ordinates are recorded in WGS 84/UTM Zone 51N. Compass measurements taken by Geologists were used to establish the dip and azimuth of the collar hole as part of their initial collar surveys. Drill collar locations were positioned using a handheld Garmin GPS unit, set to UTM WGS 84 Zone 51N coordinate reference system, with an accuracy expected to be within 2 metres. Downhole surveys were also completed using a single shot camera at 50m intervals. Collar surveys were then logged into the master MS Excel spreadsheet as part of the database.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The broad drilling pattern is at 100m spacing for a series of drill holes which are oriented in a north-west direction and dipping at predominantly at 60 degrees. These drill holes are augmented by some drill holes which have a west-north-west orientation or a north-east orientation or are vertical. (see figure 2 Drill Hole Locations). Drill holes at the MCB deposit are distributed broadly on eight grid lines, giving coverage of 1,000 metres from east to west. The drill hole spacing where significant copper-gold mineralisation has been identified is sufficient to determine the geology and grade continuity of the area, as well as the ore body and mineralisation extents.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 In the resource estimation, drill hole assays were composited to 2 metres downhole intervals. The dominant trend of the tonalite intrusion, which is directly related to the copper-gold mineralisation has an overall strike of 50 degrees and a near to vertical dip. Drill hole MCB-034, was drilled at a near to optimal orientation, designed to be close to perpendicular to the general trend of the mineralisation, whilst aiming to target important contact positions at both the southern and northern boundaries to the mineralisation. There are a number of vertical drill holes which are not optimal for assessing the geological contacts or grade distribution, however, in most cases these drill holes are also close to other drill holes which are dipping across the mineralised domains, typically at 60 degrees.
Sample security	The measures taken to ensure sample security.	 The following standard procedures were enforced for the drilling of MCB-034. Sample bags are arranged in sequence according to its sample number. These are then weighed and jotted down to a sample dispatch note which details the sample numbers, sample type and laboratory processing required. Geologists ensures that the transmittal form is correct for encoding and submission. The bags of samples are sent directly to the Intertek Laboratory in Manila by company

Audits or	The results of any audits or	 Samples were delivered to Intertek Testing Services along with two copies of the sample dispatch form. One copy for the laboratory to accept custody of the sample, and the signed/received copy return to database custodian at the Core House facility in Tabuk, Kalinga. No other specific audit or review was conducted other than
reviews	reviews of sampling techniques and data.	the validation checks by the author documented earlier regarding the sample preparation, analysis or security for the information in the MCB-034.

SECTION 2:

Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Maalinao-Caigutan-Biyog (MCB) Copper-Gold project is situated in Luzon Central Cordillera in the Barangay of Balatoc, Municipality of Pasil, province of Kalinga. The property comprises a single Exploration Tenement (EP-003-2006-CAR) which covers an area of approximately 2,719 hectares. The Exploration Tenement surrounds the previous Copper-Gold mining operations known as Batong Buhay Gold Mines, Inc. The underlying title is in the name of the Philippines registered corporation Makilala Mining Company Inc.(MMCI) which is 100% owned by Makilala Holdings Ltd. Celsius Resources Ltd has acquired 100% of Makilala Holdings upon the issuance of the extension to carry out exploration of the Tenement (EP-003-2006-CAR) from the Mines and Geosciences Bureau (MGB) of the Philippines this requirement was met on 24th November 2020
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration work and drilling was completed by Makilala Mining Company Inc. which was previously a subsidiary of Freeport-McMoRan Exploration Corporation-Philippine Branch from year 2006 to 2013, the details of which have been documented in the JORC tables. The relative quality and detail associated with the drilling information is considered to be of a high standard. This has enabled the author to establish a high level of confidence associated with the historical drilling information.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 The geological setting for the MCB copper-gold mineralisation is typical of a porphyry copper + gold + moly deposit as commonly defined in many academic papers (Hedenquist and Lowernstern, 1994; Sillitoe, R. H., 2010. Corbett and Leach, 1997). The mineralisation and associated alteration exist across the contact between the genetically related intrusive body (tonalite) and the surrounding host rock material. In most cases the surrounding host rock is a mafic volcanic, however, in some instances the older (not genetically related to copper-gold mineralisation) intrusive bodies also exists in contact with the younger intrusive resulting in broad sections of mineralisation and alteration within a series of intrusive bodies.
		 There is also evidence at MCB for epithermal vein deposit types which exist within close proximity to the large-scale porphyry copper-gold mineralisation. At this stage only th deposit type that is identified from the drilling information for MCB is a porphyry copper-gold style.
		 Basalt lava flows make up the majority of the host rocks in the tenement area, which is part of the oldest exposed un Basement Complex. This Cretaceous-Paleogene Metavolcanics has been intruded by quartz diorite comple which in Kalinga, ranges in composition from gabbro to tonalite.
		 A later stage Tonalite intrusion exists throughout the project area and is interpreted to be genetically related to the copper-gold mineralisation at MCB deposit.
		 A dacite flow and dacitic pyroclastic blankets the older basalt host rock and tonalitic intrusive rocks.
		 There are four types of ore mineralisation that were emphasized in the project:
		 Type 1 - Early high-grade porphyry Cu-Au mineralisation, hosted both in tonalite and basalt.
		 Type 2 - Mix of high-grade porphyry Cu-Au (Type 1) and high-sulphidation mineralisation (Type 4). Hosted in basalt and tonalites, but with strong Type 1 mineralisation that was partially overprinted by ore Type 4.
		Type 3 - Medium grade porphyry-copper Type 4 - Wiele cylobidetics agride grade
		 Type 4 - High-sulphidation epithermal mineralisation (See figures 3 and 4 for representative Cross Sections of th Geology and its relationship to the copper-gold mineralisation at the MCB Deposit).
Drill hole Information	A summary of all information material to the understanding of the exploration results	 See table 1 for all details pertaining to drill hole MCB-034 which is the subject of this release. In summary, with the inclusion of the drill hole reported in
	including a tabulation of the following information for all Material drill holes:	this announcement, the drill hole database for the Propert consists of 48 diamond core drilled holes with an accumulative meterage of 26,895.55.

 easting and northing of the 	See CLA announcement dated 16 September 2020 for
drill hole collar	details regarding the historical drill hole information
elevation or RL (Reduced	completed at the MCB Property which relate to the
Level – elevation above sea	interpretations associated with drill hole MCB-034.

- level in metres) of the drill hole collar
- dip and azimuth of the hole
- down hole length and interception depth
- hole length.
- If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

or

Data aggregation methods

- In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g., cutting of high grades) and cut-off grades are usually Material and should be stated.
- Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.
- The assumptions used for any reporting of metal equivalent values should be clearly stated.
- Significant intersections are reported in Table 1 and are aggregated relative to broad mineralised interval which correspond with a definable and continuous zone of coppergold mineralisation, nominally above a grade of 0.1% copper and at 0.2% copper on its margins. The intervals have been reported as weighted average totals. Internal to the broader mineralisation that has been reported, there are some internal higher-grade copper-gold assay results reported (nominally above 0.5% copper) which are interpreted to exist as a continuous domain of higher-grade copper-gold mineralisation. These sections have also been reported as weighted average totals.
- Only individual weighted average assay results have been reported and no metal equivalent values have been reported.

Criteria	JORC Code explanation	Commentary
Relationsh p between mineralisat on widths	particularly important in the	 The general orientation for the copper-gold mineralisation is striking at 50 degrees at a close to vertical dip. Drill hole MCB-034 was drilled at approximately 350 degrees and rotated towards 346 degrees for the majority of the drill hole.
and intercept lengths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g., 'down hole length, true width not known'). 	 Based on the geometry of the mineralisation relative to drill hole MCB-034, the true width of the copper-gold mineralisation is approximately 66% of the down hole interval reported for the drill hole.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See figure 4 for a representative Cross Section of the Geology and its relationship to the copper-gold mineralisation at MCB Tenement for drill hole MCB-034.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 All data for the project has been collected, validated and reported and is considered to be a fair representation of the Exploration Results from drill hole MCB-034, which is the subject of this release.
Other substantive exploration data		 Historical exploration since the date of the original grant of EP-003-2006-CAR in 2006 was undertaken under the ownership and management of Makilala Mining Company Inc. Exploration work conducted by Makilala Mining Company Inc include surface mapping and sampling (2007), ground magnetic survey (2007), induced polarisation (IP) geophysical surveys (2010), and an extended period of diamond drilling from 2006 through to 2013 for a total of 46 diamond drill holes.
Further work	The nature and scale of planned further work (e.g., tests for lateral extensions or	 There are a few locations where the potential extension to the current Minerals Resource could be tested. These locations are initially defined at depth plunging steeply to the west underneath the high-grade copper-gold mineralisation,

- depth extensions or largescale step-out drilling).
- Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.
- and also to the west of the Maalinao-Panyaw fault. The location for the possible high grade copper-gold to the west include at depth, due to the interpretation that the fault has downthrown the geology on its western side, or toward the north-west, as a possible trend exists to the mineralisation in this direction which has not been tested.
- Apart from the direct extensions to the currently defined copper-gold mineralisation, there is considerable scope for further discoveries of two defined deposit types at the MCB Tenement.
- Porphyry copper-gold deposit types
 - There are extensive intrusions in the area that are directly relate to the copper-gold mineralisation and which could at multiple locations formed significant high-grade copper-gold deposits.
- Epithermal vein hosted deposit types
 - It is considered likely that there could be a combination of narrow high grade, and/or more broad large scale and lower grade epithermal deposit types that are closely related to the porphyry copper-gold deposits at MCB.